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The concept of rotational viscosities of smectic C and chiral smectic C* 
liquid crystals 

by TOMAS CARLSSON 
Institute of Theoretical Physics, Chalmers University of Technology, 

S-412 96 Goteborg, Sweden 

BOSTJAN ZEKS 
J. Stefan Institute, University of Ljubljana, Jamova 39, YU-61111 Ljubljana, 

Yugoslavia 

The concept of rotational viscosities of smectic C and ferroelectric chiral smectic 
C* liquid crystals is reviewed. We give the expressions for the elastic torque, the 
rotational torque and the entropy production in spherical polar coordinates for 
smectic C and ferroelectric chiral smectic C* liquid crystals for pure rotational 
motion. Comparing these with the corresponding expressions for nematic liquid 
crystals, we show the way in which the rotational viscosity coefficients must be 
defined for smectic C and ferroelectric smectic C* liquid crystals in order to obtain 
consistency between the description of rotational motion of these systems and 
nematic liquid crystals. 

1. Introduction 
Smectic C ( S , )  and chiral smectic C* (S:) liquid crystals (tilted smectics) 

are layered structures [l], where the molecules within each layer are tilted, on 
average, with respect to the normal of the layer. In order to describe the orientation 
of the molecules within each layer the coordinates 0 and 4 are normally introduced. 
Here 0 describes the tilt of the molecules with respect to the normal of the smectic 
layer, and 4 describes the phase of the molecules, i.e. the angle between the 
projection of the molecules into the smectic planes and some reference direction 
within this plane. In effect, we have therefore introduced a spherical polar coordinate 
system. 

Here we study the dynamics of the Sc and S: phases, restricted to pure rotations, 
i.e. the macroscopic flow v of the molecules is assumed to be zero. Important material 
parameters connected to this motion are the rotational viscosities, which enable us to 
relate the rotational motion of the director to the corresponding generated viscous 
rotational torque r'. Generally, this torque is related to the velocity c i  of the director 
by a 3 x 3 rotational viscosity tensor y 

r' = ya ,  

where a is a coordinate describing the director. By symmetry reasoning, Escher et al. 
have argued [2] that the principal axes of y are those corresponding to the rotations 
where 0 (the soft mode) and 4 (the Goldstone mode) change, respectively, and to the 
rotation of the molecules around their long molecular axes. As we are not interested 
in this last type of rotation and, as the corresponding eigenvalue of y should be 
expected to be much smaller than the other two, we are left with two rotational 
viscosities which we denote y s  and yG.  
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360 T. Carlsson and B. Zeki 

In the literature we can find two different ways [2-51 of defining the Goldstone 
mode rotational viscosity yc .  We shall argue that one of these definitions [3-51 
produces apparent singularities in the description of the system, which are not due to 
the physics but rather to the fact that the mathematical description is singular 
whenever I3 approaches zero, i.e. close to the transition temperature T, to the smectic 
A (S,) phase. Instead we will show the way in which the rotational viscosities of the 
system must be introduced if we want to achieve consistency with the corresponding 
description [6-81 of nematic liquid crystals. 

2. The spherical polar coordinate system: relationships between torques and rotations 
The equations governing the statics and dynamics of the systems we study can be 

viewed [8,9] as a balance of torque equation, where the torques acting on the director 
are generalized forces in a spherical polar coordinate system. The coordinate system 
we use is shown in the figure. The average direction in which the molecules point is 
described by a unit vector a, commonly called the director. The intersection between 
the director and the unit sphere determines the average orientation of the molecules 
uniquely, and the rotation of the director can thus be described by the motion of this 
trace point on the unit sphere [8, 91. We orient the coordinate system in such a way 
that the direction I3 = 0 corresponds to the normal to the smectic layers which we 
take to be the z direction. As pointed out in 51, we shall study only pure rotations of 
the director. We also restrict the study to systems at a uniform temperature. 

The general dynamic equations can be written down as a balance of torque 
equation, r = 0, where r is the sum of all torques which act upon the director. 

The coordinate system used in this work is a conventional spherical polar one, oriented in such 
a way that the pole coincides with the z axis, which is taken to be the normal to the 
smectic layers. The angle 6 thus denotes the tilt of the director with respect to the normal 
of the smectic layers, whereas 4 is the angle between the projection of the directcr into 
the smectic plane and the x axis. The effect of an applied torque r = roe + r44 is to 
rotate the director with the moment_ary axis of rctation given by r. The change of the 
director is then given by A6 - (Tm6 - rs/sin6+). 
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Rotational viscosities of S,  and S,* 361 

We study the case where the molecules relax under the influence of elastic forces only. 
The torque acting on the director can be divided into two parts [8, 91, i.e. we write 

r = rr + rel, 
where r' is the rotational torque which is related to the viscous dissipation and re' is 
the elastic torque. As we are using a spherical polar coordinates system the torques 
have to be divided into their proper components, 

r = roe + r& 
where the direction of the basis vectors 8 and 4 are shown in the figure. If we consider 
only systems where the director is allowed to vary in the z direction, i.e. 8 = 8(z) and 
4 = 4(z) ,  we can express the free energy density of the system as g = g(8, Q', 4, +'), 
where 8' = d8/dz and 4' = d+/dz, respectively. The discussion can, of course, be 
generalized to the case where electric or magnetic fields are present, just by adding the 
corresponding contributions to the free energy density. If the system is in a state such 
that g is not at a minimum, an elastic torque will be exerted on the director according 
to ~ 9 1  

The consequence of this elastic torque acting on the director in a state given by a point 
(8, 4) on the unit sphere is to rotate the director with the momentary axis of rotation 
given by re'. As is shown in the figure, 8 and 4 will then change according to 

A 4  - -r;'/sin8, (3 a> 

A8 - r:. (3 b) 

The minus sign in equation (3a) comes from the fact that a rotation along the positive 
8 axis corresponds to decreasing 4 and the factor sine is due to the fact that when 
changing 4,  the director travels along a circle on the unit sphere, which has a radius 
of sine. The balance of torque equation is now written in component form as 

r;I + r; = 0, (4 a> 

r; + r; = 0, (4 b) 

where ri and l-; are the spherical polar components of the rotational torque. Gener- 
ally, this rotational torque is related to the rotations of the director by a viscosity 
tensor (see equation (1)). The diagonal form of equation ( 1 )  is obtained if we use the 
spherical polar coordinate system introduced by the figure and we can therefore write 

r; = y G $  sin 8, ( 5  4 
r; = - y s B .  ( 5  b) 

By equations (5 )  we have defined the rotational viscosities yc and y s .  The signs in 
these definitions have been chosen in such a way that if both yG and ys are taken to be 
positive, then the corresponding rotational torque will counteract the corresponding 
rotation (cf. the figure). The factor sin 8 in equation (5a) comes from the fact that we 
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362 T. Carlsson and B. b k i  

wish to introduce the rotational viscosities in such a way that they relate the rotational 
torque to the physical displacement of the director under a rotation. In such a way 
the definitions of equations ( 5 )  will be consistent with the choice of the generalized 
fluxes and forces in 43, which in turn are chosen to be consistent with the Leslie- 
Ericksen formulation [6-81 of the hydrodynamic theory of nematics. 

3. The dissipation function: definition of the rotational viscosity of nematics 
We now study the rotational motion of the director from the point of view of 

irreversible statistical mechanics [ 101. We shall write down the entropy production o 
of the system expressed in terms of a set of generalized fluxes J, and forces X, . The 
choice of J ,  and X, is to a certain extent arbitrary, but the product of any flux and its 
conjugate force must have the dimension of entropy production. Our choice of fluxes 
are 

J ,  = - $ sine, (6 4 
J2 = 8. (6 b) 

The conjugate forces to these fluxs are chosen to be the torque components of 
equations (1) 

x, = r;', (7 4 
x2 = r;. (7 b) 

The general phenomenological equations relating these forces and fluxes are written 
J = LX. In the coordinate representation that we have chosen the tensor L is 
diagonal, the elements of which are just the reciprocal of the rotational viscosities yc 
and y s .  The entropy production of the system can now be written (7' being the 
temperature of the system) as 

To = J - X  = yc$2sin29 + ySd2, (8) 

where we have utilized equations (4)-(7). 
We study briefly how this compares to the Leslie-Ericksen theory of nemato- 

dynamics [6-81. The entropy production per unit volume is, if the system performs 
pure rotational motion, given by [ l l ,  121 

To = y l i . 8 ,  (9) 
where y l  is the nematic rotational viscosity and il is the nematic director. Expressing 
Ei by the polar angles 9 and 4, equation (9) gives 

To = y,($2sin26' + d2).  (101, 

Furthermore, the spherical polar components of the rotational torque acting on the 
director under a general rotation can be derived [8, 91 to be 

r; = y l $  sine, (11 4 
r; = - y 8  1 .  (11 b) 

Equations (10) and (1 1) are derived with the Leslie-Ericksen stress tensor [6] of 
nematic liquid crystals as a starting point. We conclude therefore that the symmetry 
of this stress tensor allows only one rotational viscosity for the nematic phase: only 
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Rotational viscosities of Sc and Sz 363 

the velocity of the trace point of the director on the unit sphere determines the 
dissipation, independently if the rotation is of a 0 or a nature. 

4. The smectic C and smectic C* rotational motion: torques and dissipation 
Generally, a viscosity is a material parameter which is a measure of the response 

of a system when it is acted upon by a certain force, i.e. the viscosity can be defined 
as the ratio force/flux. This definition can be formalized in the language of irreversible 
statistical mechanics, discussed in $3. As there is a certain degree of freedom of 
chosing the fluxes and forces, there will be the possibility of introducing different 
definitions of the viscosities of the system. Generally the choice of fluxes and forces 
should be such, that the fluxes (see equations (6)) correspond to the time derivatives 
of some generalized coordinates, while the forces (see equations (7)) correspond to the 
derivatives (see equations (2)) of a potential function with respect to these generalized 
coordinates. We have, when studying the Sc and S,* phases, chosen these generalized 
coordinates to correspond to the physical displacements 0 and 4 sin 8 of the director 
under a rotation. This has, as a consequence, that the rotational torque of the system 
is given by equations (5) while the entropy production is given by equation (8). These 
equations can be viewed as the definition of the rotational viscosities of the S, and S z  
phases and is, in our opinion, the most physically sound one as it relates the rotational 
viscosities to the true motion of the director. We also see when comparing equations 
( 5 )  with equations (1 1) and equation (8) with equation (10) that this definition makes 
the description of rotational motion of the S, and S,* phases consistent with the 
corresponding description of nematics. 

Through equations (5) and (8) we have introduced two rotational viscosities for 
and the Sc and S,* phases: yG which is related to rotations along the smectic cone (the 
Goldstone mode) and ys which is related to rotations in which the tilt of the molecules 
changes (the soft mode). The molecules which constitute the smectic systems and the 
nematics are of the same kind. The fact that the dissipation for both 8 and 4 rotations 
in the nematic phase is regulated by the same rotational viscosity y, makes us believe 
that even if we generally have to introduce two rotational viscosities for the tilted 
smectics, these should be approximately equal. We do not think that the nature of the 
dissipation changes drastically just because the molecules are confined in layers. We 
should also keep in mind that the layers are far from being perfect, the molecules 
frequently stick into the neighbouring layer, and so on. Thus we think that the 
approximation yc z ys should be valid to a reasonable accuracy. The validity of this 
approximation should also be better the closer to T, the system is, because at T, the 
B and 4 rotations are degenerate. In the end, however, experiments will have to 
confirm this approximation. 

5. Rotational motion along the smectic cone: connection between proper and 
effective material parameters 

In this section we write down the equation governing the electro-optic switching 
[13] of the ferroelectric S,* phase, and we show how the analysis of this equation is 
related to a proper way of defining as well as the rotational viscosity yG the twist elastic 
constant K 3 .  We make the analysis as simple as possible, considering only the 
contributions to the free energy density from the twisting of the layers and from the 
interaction between the spontaneous polarization and the electric field. Furthermore 
we make the constant amplitude approximation and consider only switching for 
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364 T. Carlsson and B. Zekg 

which 8 is constant. This is a good approximation, except [14] very close to T, where 
the soft mode [15] deformations become important. The simplest form of the Landau 
free energy density [16, 171 appropriate for the analysis can, assuming that the electric 
field is applied along the y direction, be written [14] as 

In this equation K3 is the twist elastic constant, A the Lifschitz coefficient responsible 
for the twisting of the layers, P the spontaneous polarization of the system and E the 
magnitude of the electric field. We also assume that the system is sufficiently close to 
T, that we can replace sin 8 by 8, although not so close that the constant amplitude 
approximation is not valid. The sum of the elastic and electric torques acting on the 
director is now calculated from equations (2 a) and (12): 

PE d2 4 r;' = -sin4 - K38--, e dz2 

where we again have replaced sin 8 by 8. The equation governing the rotation of the 
director is given by inserting the rotational (see equation (5  a)) and the elastic (see 
equation (13)) torques into the balance of torque equation (see equation (4 a)). In this 
way we find 

B2K3+" - PEsin4 = 02yG$.  (14) 

g'4" - PEsin4 = y$$.  (15) 

This equation is often found written in the slightly different form [3] 

Equation (15) is obtained if we do not define the rotational and the elastic torques 
with respect to the true physical displacement 4 sin 8 but instead with respect to the 
angle 4, and if we also include in the free energy density of equation (12) the 8* 
dependence in the twist elastic constant K3. Thus, if equation (1 5 )  is used to analyse 
an electro-optic switching experiment in order to obtain the Goldstone mode 
rotational viscosity or the twist elastic constant, we see by comparing equations (14) 
and (15) that the quantities determined are what can be called an effective rotational 
viscosity y:' = yG sin2 8 and an effective twist elastic constant K:* = K3 sin2 8, where 
for completeness we have not made the approximation sin8 N 8 when defining the 
effective material parameters. 

The benefit of using equation (15) when analysing an experiment is, of course, 
that only g" and y$ can be determined unless we also measure the tilt of the 
system. However, it is K3 and yG which are the quantities connected to the true 
physical torques which act on the director. Thus, when studying the temperature 
dependence of the material parameters of the system we must be aware of the 
fact that in g' and yf we have imposed an extra temperature dependence through 
the factor sin2 8. This leads to a rather unphysical description, because yg approaches 
zero at T, and a vanishing viscosity should indicate some kind of superfluid- 
like rotation of the molecules. This is, of course, not the case, but rather a specific 
rotation A 4  corresponds to a smaller physical displacement of the molecules 
the closer to T, the system is, a displacement which degenerates to one point 
at T,. 
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6. Conclusions 
In this paper we have shown that if we wish to achieve consistency between the 

viscoelastic description of the Sc and Sz phases and the already existing and accepted 
description for nematic liquid crystals, the rotational torque acting on the director 
must be that given by equation (5) whereas the twist elastic torque must be derived 
from equation (2 a) using the Landau free energy density given by equation (12). This 
is due to the fact that effectively we are using the spherical polar coordinate system 
of the figure in describing the system, the coordinate 4 of which corresponds to a 
physical displacement 4 sin 0 of the director. If we do not adopt these definitions, 
instead hiding the 0 terms in the definitions of y$ and gff instead of keeping them in 
the equations, we lose track of which part of the temperature dependence of the 
physical quantities that we study is related to the temperature dependences of the 
material parameters and which part is related to the temperature dependence of the 
tilt, 8. In conclusion we argue therefore that in order to obtain a coherent and 
physically sound description of the viscoelastic behaviour of the Sc and SE phases, the 
rotational viscosities should be defined with equations (5) and (8) as a basis, whereas 
the twist elastic part of the Landau free energy density must be that first introduced 
by Pikin and Indenbom [16], the corresponding twist electric torque then being 
derived by the use of equation (2 a). 
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